
Greenstalk Documentation
Release 2.0.1

Justin Mayhew

May 27, 2023

Contents

1 Contents 3
1.1 Installation . 3
1.2 Overview . 3
1.3 API Reference . 6

Index 11

i

ii

Greenstalk Documentation, Release 2.0.1

Greenstalk is a Python client library for communicating with the beanstalkd work queue. It makes it easy to write:

• Producers, processes that insert jobs into a queue:

import greenstalk

with greenstalk.Client(('127.0.0.1', 11300)) as client:
client.put('hello')

• Consumers, processes that take jobs from a queue and execute some work:

import greenstalk

with greenstalk.Client(('127.0.0.1', 11300)) as client:
while True:

job = client.reserve()
print(job.body)
client.delete(job)

This library is a thin wrapper over the wire protocol. The documentation doesn’t attempt to fully explain the se-
mantics of the beanstalk protocol. It’s assumed that users of this library will be referring to the official beanstalkd
documentation.

Contents 1

https://beanstalkd.github.io/

Greenstalk Documentation, Release 2.0.1

2 Contents

CHAPTER 1

Contents

1.1 Installation

Greenstalk is available on PyPI:

pip install greenstalk

The server is available in most package repositories. For Debian and Ubuntu:

sudo apt install beanstalkd

For macOS with Homebrew:

brew install beanstalkd

1.2 Overview

Before getting started, ensure that Greenstalk is installed and the server is running.

1.2.1 Setup

Begin by importing the library:

>>> import greenstalk

Create a Client, which immediately connects to the server on the host and port specified:

>>> client = greenstalk.Client(('127.0.0.1', 11300))

Alternatively, if your server is listening on a Unix domain socket, pass the socket path instead:

3

https://pypi.org/project/greenstalk/

Greenstalk Documentation, Release 2.0.1

>>> client = greenstalk.Client('/var/run/beanstalkd/socket')

1.2.2 Inserting Jobs

Jobs are inserted using put. The job body is the only required argument:

>>> client.put('hello')
1

Jobs are inserted into the currently used tube, which defaults to default. The currently used tube can be changed
via use. It can also be set with the use argument when creating a Client.

1.2.3 Consuming Jobs

Jobs are consumed using reserve. It blocks until a job is reserved (unless the timeout argument is used):

>>> job = client.reserve()
>>> job.id
1
>>> job.body
'hello'

Jobs will only be reserved from tubes on the watch list, which initially contains a single tube, default. You can add
tubes to the watch list with watch and remove them with ignore. For convenience, it can be set with the watch
argument when creating a Client.

The server guarantees that jobs are only reserved by a single consumer simultaneously. Let’s go ahead and tell the
server that we’ve successfully completed the job using delete:

>>> client.delete(job)

Here’s what you can do with a reserved job to change its state:

Command Normal use case Effect
delete Success Job is permanently deleted
release Expected failure Job is released back into the queue to be retried
bury Unknown failure Job is put in a special FIFO list for later inspection

1.2.4 Body Serialization

The server does not inspect the contents of job bodies, it’s only concerned with routing them between clients. This
gives clients full control over how they’re sent and received on the underlying connection.

JSON serialized payloads encoded in UTF-8 are a great default representation.

Here’s an example showing how a producer and consumer (likely running in separate processes) could communicate
a user registration email job.

Producer:

payload = {'user_id': user_id}
body = json.dumps(payload)
client.put(body)

4 Chapter 1. Contents

Greenstalk Documentation, Release 2.0.1

The consumer would then do the inverse:

job = client.reserve()
payload = json.loads(job.body)
send_registration_email(payload['user_id'])

1.2.5 Body Encoding

When creating a Client, you can use the encoding argument to control how job bodies are encoded and decoded.
It defaults to UTF-8.

You can set the encoding to None if you’re working with binary data. In that case, you’re expected to pass in
bytes (rather than str) bodies, and bytes bodies will be returned.

1.2.6 Job Priorities

Every job has a priority which is an integer between 0 and 4,294,967,295. 0 is the most urgent priority. The put,
release and bury methods all take a priority argument that defaults to 2**16.

1.2.7 Delaying a Job

Sometimes you’ll want to schedule work to be executed sometime in the future. Both the put and release methods
have a delay argument.

1.2.8 Time to Run

Every job has an associated time to run (TTR) value specified by the ttr argument to the put method. It defaults to
60 seconds.

The server starts a timer when a job is reserved. If the consumer doesn’t send a delete, release, or bury
command within the TTR, the job will time out and be released back into the ready queue.

If more time is required to complete a job, the touch method can be used to refresh the TTR.

1.2.9 Job Lifecycle

Here’s a great flowchart from the beanstalkd protocol documentation:

put with delay release with delay
----------------> [DELAYED] <------------.

| |
| (time passes) |
| |

put v reserve | delete
-----------------> [READY] ---------> [RESERVED] --------> *poof*

^ ^ | |
| \ release | |
| `-------------' |
| |
| kick |
| |
| bury |

(continues on next page)

1.2. Overview 5

https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt

Greenstalk Documentation, Release 2.0.1

(continued from previous page)

[BURIED] <---------------'
|
| delete
`--------> *poof*

1.3 API Reference

1.3.1 Job

class greenstalk.Job(id: int, body: Union[bytes, str])
A job returned from the server.

id = None
A server-generated unique identifier assigned to the job on creation.

body = None
The content of the job. Also referred to as the message or payload. Producers and consumers need to agree
on how these bytes are interpreted.

1.3.2 Client

class greenstalk.Client(address: Union[Tuple[str, int], str], encoding: Optional[str] = ’utf-8’, use:
str = ’default’, watch: Union[str, Iterable[str]] = ’default’)

A client implementing the beanstalk protocol. Upon creation a connection with beanstalkd is established and
tubes are initialized.

Parameters

• address – A socket address pair (host, port) or a Unix domain socket path.

• encoding – The encoding used to encode and decode job bodies.

• use – The tube to use after connecting.

• watch – The tubes to watch after connecting. The default tube will be ignored if it’s
not included.

close()→ None
Closes the connection to beanstalkd. The client instance should not be used after calling this method.

put(body: Union[bytes, str], priority: int = 65536, delay: int = 0, ttr: int = 60)→ int
Inserts a job into the currently used tube and returns the job ID.

Parameters

• body – The data representing the job.

• priority – An integer between 0 and 4,294,967,295 where 0 is the most urgent.

• delay – The number of seconds to delay the job for.

• ttr – The maximum number of seconds the job can be reserved for before timing out.

use(tube: str)→ None
Changes the currently used tube.

Parameters tube – The tube to use.

6 Chapter 1. Contents

Greenstalk Documentation, Release 2.0.1

reserve(timeout: Optional[int] = None)→ greenstalk.Job
Reserves a job from a tube on the watch list, giving this client exclusive access to it for the TTR. Returns
the reserved job.

This blocks until a job is reserved unless a timeout is given, which will raise a TimedOutError if a
job cannot be reserved within that time.

Parameters timeout – The maximum number of seconds to wait.

reserve_job(id: int)→ greenstalk.Job
Reserves a job by ID, giving this client exclusive access to it for the TTR. Returns the reserved job.

A NotFoundError is raised if a job with the specified ID could not be reserved.

Parameters id – The ID of the job to reserve.

delete(job: Union[greenstalk.Job, int])→ None
Deletes a job.

Parameters job – The job or job ID to delete.

release(job: greenstalk.Job, priority: int = 65536, delay: int = 0)→ None
Releases a reserved job.

Parameters

• job – The job to release.

• priority – An integer between 0 and 4,294,967,295 where 0 is the most urgent.

• delay – The number of seconds to delay the job for.

bury(job: greenstalk.Job, priority: int = 65536)→ None
Buries a reserved job.

Parameters

• job – The job to bury.

• priority – An integer between 0 and 4,294,967,295 where 0 is the most urgent.

touch(job: greenstalk.Job)→ None
Refreshes the TTR of a reserved job.

Parameters job – The job to touch.

watch(tube: str)→ int
Adds a tube to the watch list. Returns the number of tubes this client is watching.

Parameters tube – The tube to watch.

ignore(tube: str)→ int
Removes a tube from the watch list. Returns the number of tubes this client is watching.

Parameters tube – The tube to ignore.

peek(id: int)→ greenstalk.Job
Returns a job by ID.

Parameters id – The ID of the job to peek.

peek_ready()→ greenstalk.Job
Returns the next ready job in the currently used tube.

peek_delayed()→ greenstalk.Job
Returns the next available delayed job in the currently used tube.

1.3. API Reference 7

Greenstalk Documentation, Release 2.0.1

peek_buried()→ greenstalk.Job
Returns the oldest buried job in the currently used tube.

kick(bound: int)→ int
Moves delayed and buried jobs into the ready queue and returns the number of jobs effected.

Only jobs from the currently used tube are moved.

A kick will only move jobs in a single state. If there are any buried jobs, only those will be moved.
Otherwise delayed jobs will be moved.

Parameters bound – The maximum number of jobs to kick.

kick_job(job: Union[greenstalk.Job, int])→ None
Moves a delayed or buried job into the ready queue.

Parameters job – The job or job ID to kick.

stats_job(job: Union[greenstalk.Job, int])→ Dict[str, Union[str, int]]
Returns job statistics.

Parameters job – The job or job ID to return statistics for.

stats_tube(tube: str)→ Dict[str, Union[str, int]]
Returns tube statistics.

Parameters tube – The tube to return statistics for.

stats()→ Dict[str, Union[str, int]]
Returns system statistics.

tubes()→ List[str]
Returns a list of all existing tubes.

using()→ str
Returns the tube currently being used by the client.

watching()→ List[str]
Returns a list of tubes currently being watched by the client.

pause_tube(tube: str, delay: int)→ None
Prevents jobs from being reserved from a tube for a period of time.

Parameters

• tube – The tube to pause.

• delay – The number of seconds to pause the tube for.

1.3.3 Exceptions

For completeness all errors that beanstalkd can return are listed here. BadFormatError and
ExpectedCrlfError should be unreachable unless there’s a bug in this library.

class greenstalk.Error
Base class for non-connection related exceptions. Connection related issues use the built-in
ConnectionError.

class greenstalk.BeanstalkdError
Base class for error messages returned from the server.

class greenstalk.NotFoundError
For the delete, release, bury, and kick commands, it means that the job does not exist or is not reserved by the
client.

8 Chapter 1. Contents

Greenstalk Documentation, Release 2.0.1

For the peek commands, it means the requested job does not exist or that there are no jobs in the requested state.

class greenstalk.TimedOutError
A job could not be reserved within the specified timeout.

class greenstalk.DeadlineSoonError
The client has a reserved job timing out within the next second.

class greenstalk.NotIgnoredError
The client attempted to ignore the only tube on its watch list.

class greenstalk.BuriedError(values: Optional[List[bytes]] = None)
The server ran out of memory trying to grow the priority queue and had to bury the job.

This can be raised in response to a put or release command.

id = None
A server-generated unique identifier that was assigned to the buried job.

class greenstalk.DrainingError
The client tried to insert a job while the server was in drain mode.

class greenstalk.JobTooBigError
The client attempted to insert a job larger than max-job-size.

class greenstalk.OutOfMemoryError
The server could not allocate enough memory for a job.

class greenstalk.InternalError
The server detected an internal error.

class greenstalk.BadFormatError
The client sent a malformed command.

class greenstalk.ExpectedCrlfError
The client sent a job body without a trailing CRLF.

class greenstalk.UnknownCommandError
The client sent a command that the server does not understand.

class greenstalk.UnknownResponseError(status: bytes, values: List[bytes])
The server sent a response that this client does not understand.

status = None
The status code of the response. Contains b'SOME_ERROR' for the response b'SOME_ERROR 1 2
3\r\n'.

values = None
The remaining split values after the status code. Contains [b'1', b'2', b'3'] for the response
b'SOME_ERROR 1 2 3\r\n'.

1.3. API Reference 9

Greenstalk Documentation, Release 2.0.1

10 Chapter 1. Contents

Index

B
BadFormatError (class in greenstalk), 9
BeanstalkdError (class in greenstalk), 8
body (greenstalk.Job attribute), 6
BuriedError (class in greenstalk), 9
bury() (greenstalk.Client method), 7

C
Client (class in greenstalk), 6
close() (greenstalk.Client method), 6

D
DeadlineSoonError (class in greenstalk), 9
delete() (greenstalk.Client method), 7
DrainingError (class in greenstalk), 9

E
Error (class in greenstalk), 8
ExpectedCrlfError (class in greenstalk), 9

I
id (greenstalk.BuriedError attribute), 9
id (greenstalk.Job attribute), 6
ignore() (greenstalk.Client method), 7
InternalError (class in greenstalk), 9

J
Job (class in greenstalk), 6
JobTooBigError (class in greenstalk), 9

K
kick() (greenstalk.Client method), 8
kick_job() (greenstalk.Client method), 8

N
NotFoundError (class in greenstalk), 8
NotIgnoredError (class in greenstalk), 9

O
OutOfMemoryError (class in greenstalk), 9

P
pause_tube() (greenstalk.Client method), 8
peek() (greenstalk.Client method), 7
peek_buried() (greenstalk.Client method), 7
peek_delayed() (greenstalk.Client method), 7
peek_ready() (greenstalk.Client method), 7
put() (greenstalk.Client method), 6

R
release() (greenstalk.Client method), 7
reserve() (greenstalk.Client method), 6
reserve_job() (greenstalk.Client method), 7

S
stats() (greenstalk.Client method), 8
stats_job() (greenstalk.Client method), 8
stats_tube() (greenstalk.Client method), 8
status (greenstalk.UnknownResponseError attribute),

9

T
TimedOutError (class in greenstalk), 9
touch() (greenstalk.Client method), 7
tubes() (greenstalk.Client method), 8

U
UnknownCommandError (class in greenstalk), 9
UnknownResponseError (class in greenstalk), 9
use() (greenstalk.Client method), 6
using() (greenstalk.Client method), 8

V
values (greenstalk.UnknownResponseError attribute),

9

11

Greenstalk Documentation, Release 2.0.1

W
watch() (greenstalk.Client method), 7
watching() (greenstalk.Client method), 8

12 Index

	Contents
	Installation
	Overview
	API Reference

	Index

